Journal of Organometallic Chemistry, 190 (1980) 417–433 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

SYNTHESIS AND SPECTROSCOPIC STUDIES OF PHENYLLEAD HALIDE AND THIOCYANATE ADDUCTS WITH HEXAMETHYLPHOSPHORAMIDE

IVOR WHARF AND MARIO ONYSZCHUK* Department of Chemistry, McGill University, Montreal, Quebec, Canada, H3A 2K6 and JACK M. MILLER AND TIMOTHY R.B. JONES Department of Chemistry, Brock University, St. Catherines, Ontario, Canada, L2S 3A1

(Received December 27th, 1979)

Summary

Hexamethylphosphoramide (HMPA) adducts of the type Ph_PbX.HMPA (X=Cl, Br, I, and NCS), Ph_PbX_2.2HMPA (X=Cl, Br and I), and Ph_PbX_.HMPA (X=Br and I), have been prepared and characterized by infrared, Raman, mass, and ³¹P nmr spectroscopy. Molecular weight and infrared solution data show that Ph₂PbX·HMPA adducts dissociate in benzene, the degree of dissociation being NCS<<Cl<Br<I. The thiocyanate adducts Ph_PbNCS.HMPA and Ph_Pb(NCS)_.2HMPA have ν (CN) and ν (CS) frequencies in the solid state, and ν (CN) frequencies and absorptivities in benzene solution consistent with N-bonded thiocyanate in the solid state and in benzene solution. Vibrational frequencies are reported in the range 260 to 80 $\rm cm^{-1}$ and assignments are made for v(Pb-X), v(Pb-O), and v(Pb-NCS)The 1:1 adducts Ph₃PbX·HMPA are monomeric and trigonal modes. bipyramidal, whereas the 1:2 adducts Ph2PbX2.2HMPA are monomeric

* To whom correspondence should be addressed.

and cis-octahedral and the Ph_2PbX_2 ·HMPA appear to be halogen bridged polymers with lead six-coordinate. Coordination of HMPA causes a small upfield change in ³¹P chemical shift values, and ²J(Pb-P) values vary with X in the order: NCS>I~Br>Cl for Ph_3PbX.HMPA adducts. Corresponding tin and lead adducts are compared with respect to mode of adduct formation.

Introduction

Much less is known of phenyllead halide adducts compared with the analogous tin compounds (1). A few diphenyllead halide adducts with O-donor ligands have been prepared but no spectroscopic data were recorded (2,3), apart from 13 C and 207 Pb nmr data for solutions of phenyllead halides in O-donor solvents (4,5).

Recently, several adducts of Ph₂Pb(NCS)₂ including some with O-donorswere prepared (6) and "NCS-group" vibrational data determined. In particular, Ph₂Pb(NCS)₂·2HMPA (HMPA=hexamethylphosphoramide) was found to be monomeric and undissociated in benzene thus raising the possibility of solution studies on organolead halide adducts with HMPA. As part of our continuing interest in the adducts of phenyllead and -tin halides and pseudohalides, we report the preparation and characterisation by infrared, Raman, mass, and ³¹P nmr spectroscopy of adducts of diphenyland triphenyl-lead halides and isothiocyanates with HMPA. Our purpose is to investigate the effect of change in X and number of phenyl groups on adduct formation and properties, and to compare the lead adducts prepared here with the analogous tin compounds (7). Crystal data for Ph₃PbCL+HMPA were reported earlier (8).

Experimental

Triphenyllead chloride, and diphenyllead dichloride were commercial products dried in a vacuum before use. Triphenyllead

bromide and iodide were prepared by the reaction of triphenyllead acetate with potassium halide in ethanol-water. Literature methods were used to prepare triphenyllead isothiocyanate (9) and diphenyllead dibromide and di-iodide (10). Benzene, pentane, and HMPA were dried and stored over molecular sieves before use.

Microanalyses for C,H,N, and halogen were done by Chemalytics, Tempe, Arizona, while molecular weights were determined by Galbraith Laboratories, Knoxville, Tennessee, using vapour pressure osmometry. Spectroscopic measurements (infrared, Raman, ³¹P nmr, mass spectra) were made as described elsewhere (7).

Preparations

The parent phenyllead halide or isothiocyanate (2-5 gm) dissolved in a solution of HMPA (3-5 ml) in benzene (20-30 ml) and the adduct precipitated after pentane (50-100 ml) was added to the cooled solution. Where possible, crude products were recrystallised from benzene-pentane. Yields: 75-90%. Recrystallisation of the di-adducts of diphenyllead halides gave the monoadduct. Ph₂Pb(NCS)₂·2HMPA was prepared as previously described (4).

Results and Discussion

Analytical data for the new adducts included in the present study are given in Table I. All adducts are air-stable crystalline solids with sharp melting points, and the triphenyllead halide adducts are soluble in many non-polar solvents such as benzene and dichloromethane but are insoluble in pentane. However, adducts in the $Ph_2PbX_2 \cdot nHMPA$ series (except $Ph_2Pb(NCS)_2 \cdot 2HMPA$ (6)) are only slightly soluble in benzene. The least soluble adduct was $Ph_2PbCl_2 \cdot 2HMPA$ which yielded Ph_2PbCl_2 when recrystallised from benzene, while $Ph_2PbX_2 \cdot 2HMPA$ (X=Br,I) gave the monoadducts. Molecular weight and infrared solution data (Table II) show that most $Ph_3PbX \cdot HMPA$ adducts dissociate in benzene, the degree of dissociation being: NCS<<Cl<Br<I. For Ph_2PbX_2 adducts

TABLE I - Analy	tical Data ^a					İ
Compound	Colour	MPt (^O C)	С %	дэ 11	N 8	4X ⁸
Рһ ₃ РЬСІ •НМРА	White	166-7	44.3 (44.1)	5.05 (5.1)	6.3 (6.4)	4.8 (5.4)
Рһ ₃ РЫВГ • ІМРА	white	154-5	41.4 (41.3)	4.65 (4.8)	5.65 (6.0)	11.6 (11.45)
Рһ ₃ Рыг∙нм₽А	cream	134-5	38.55 (38.7)	4.4 (4.5)	5,65 (5,6)	16.6 (17.0)
Ph ₃ PbNCS•HMPA	white	120	44.0 (44.4)	4.7 (4.9)	8.1 (8.3)	ł
Ph ₂ PbC1 ₂ ・2HMPA	white	153-4	36.35 (36.5)	5.7 (5.9)	10.35 (10.6)	8.8 (0.0)
Ph ₂ PbBx ₂ ·2HMPA	white	162-3	32.1 (32.8)	5.2 (5.3)	9.1 (8.6)	18.6 (18.2)
Ph ₂ PbI ₂ ·2HMPA	pale- yellow	139	29.3 (29.6)	4.6 (4.8)	8.8 (8.6)	26.1 (26.1)
Ph ₂ PbBr ₂ ·HMPA	white	179	30.7 (30.9)	4.0 (4.0)	5.8 (6.0)	22.9 (22.8)
Ph ₂ Pb12.HMPA	pale- Yellow	124	27.0 (27.2)	3.35 (3.55)	5.6 (5.3)	32.5 (31.95)

a Calculated values in parentheses.

X is halogen.

q

(X=Cl,Br,I), only infrared measurements on saturated solutions (<0.01M) could be made. Although some adduct is found in solution as confirmed by ³¹P nmr studies, no trends in dissociation can be deduced from these results because any equilibria present must involve both the solid adduct and parent halide.

Compound	Molecular ^a	ν (P=O) ^b	³¹ P nmr	c
	weight	(cm ⁻¹)	δ _p (ppm)	2 Pb-P(Hz)
Ph3PbC1-HMPA	387 (653)	1196m 1212wm	24.5	85
Ph ₃ Pbbr•HMPA	396 (698)	1195m 1213wm	24.2	100
Ph ₃ PbI.HMPA	409 (745)	1198wm 1214m	23.3	100
Ph ₃ PbNCS-HMPA	687 (676)	1192m 1212sh	24.3	125
Ph_PbCl ₂ ·2HMPA	d	1194m 1212s	24.8	184
Ph2PbBr2·2HMPA	đ	1195s 1213m	24.7	186
Ph2Pb12·2HMPA	d	1197m 1214s	24.3	183
Ph ₂ Pb(NCS) ₂ ·2HMPA (6)	840 (836)	1193s	23.5	206
Ph2PbBr2-HMPA	đ	1192s 1211m	23.8	168
Ph2PbI2·HMPA	d	1196s 1213sm	24.1	not obs.

TABLE II - Solution data

^a In benzene, at 39⁰C; conc. 0.01M; theoretical values are in parentheses.

^b In benzene; conc. 0.05M or saturated solution; for free HMPA, v(P=0) is 1214 cm^{-1} .

^c In CDC1₃/CH₂Cl₂ eutectic at 190K; chemical shifts are positive downfield from 85% H₃PO₄ external reference; for free HMPA, ô_p is 26.5 ppm.

d Insufficiently soluble for molecular weight measurement.

Vibrational Spectra

For $Ph_3PbNCS \cdot HMPA$, NCS-group vibrational data both in the solid state; v(CN), 2050s (R), 2057 vs (IR); v(CS) 799w(R), 797vw(IR); and in benzene solution; v(CN), 2043(R), 2042(IR), with $A_{CN} = 12 \times 10^4 \text{ M}^{-1} \text{ cm}^{-2} (\text{NCS})^{-1}$, indicate predominantly N-bonded thiocyanate is present, as was found earlier for $Ph_2Pb(NCS)_2 \cdot 2HMPA$ (6) (from solid-state data) and the corresponding tin compounds (7). In benzene solution $Ph_2Pb(NCS)_2 \cdot 2HMPA$ shows v(CN) at 2041 cm⁻¹ (R), 2030 cm⁻¹(IR), with $A_{CN} = 17 \times 10^4 \text{M}^{-1} \text{ cm}^{-2} (\text{NCS})^{-1}$, all consistent with the presence of N-bonded thiocyanate.

Skeletal frequencies in the region below 250 cm⁻¹ for these compounds, are given in Tables III to V; weak peaks $(130-160 \text{ cm}^{-1})$ due to the phenyl group (x) vibration have been omitted. The assignments given were based on those for the parent phenyllead halides reported by Clark et al(11). Lead-oxygen stretching modes were assigned to the 200-220 cm⁻¹ region, slightly lower than in the corresponding tin compounds. Since no crystal structures of phenyllead halide adducts have yet been published, only tentative structural conclusions can be reached on the basis of the vibrational data reported here. Only recently were the crystal structures of Ph₃PhX(X=Cl,Br) determined (13) although that of Ph₂PbCl₂ has been known for some time (14).

The triphenyllead halide adducts show a single lead-halogen stretching mode both infrared and Raman active and two lead-phenyl stretches, one strongly infrared active (asymmetric) and the other only Raman active(symmetric). In addition, for $Ph_3MX \cdot HMPA$ (M=Sn or Pb) pairs, values of the ratios v(Pb-X)/v(Sn-X)* are 0.86(X=Cl), 0.95(X=Br), 0.96(X=I) and 0.86(X=NCS), while for

(Continued on p. 425)

^{*} Values of the ratio v(Pb-X)/v(Sn-X) for representative pairs of isostructural lead and tin halide species are: MCl₄, 0.87; MCl₆²⁻, 0.89; Ph₃MX, 0.89(X=Cl), 0.83(X=Br), 0.96(X=1)(7,15).

		ASSIGNMENT	v _{as} (Pb-Ph)(t)*	v (Pb-cl)	2v (Pb-I)	v (Pb-0)	v _S (Pb-Ph)(t')*	* (n)	v (Pb-NCS)	v (Pb-Br)	v (Pb-I)	deformations
	S	22	235 230 m			207sh	198vs	184m				
	X=NC	IR	2 35sh 2 30vs	-		208vs		176s	162vs,br			102sbr 89sh
HMPA		ĸ	229m		218m		199vs	184m			108vs	
for Ph ₃ PbX.	I=X	IR .	232 VS 225 VS		215s	202vs		177m			108vs	98sh 88vw
cies (cm ⁻¹)	Br	R	228m				199vs	184sh		1405		
tal Frequen	×≍	IR	224vs			204m		182m		140s		118vw 96vw 86w
III - Skele	c1	R	229m	216m		208vw	195vs	169vw				123w 105wm
TABLE])=X	IR	224sh	217vs		207sh		187s 171sh				123w 103w 87vw

.

'~~¹' for ph phy.HMPA ç ł \$ Ē 61010401

* Whiffen's notation (12)

	i)			H		SUN=X		Assignment
IR	ч	IR	ч	IR	Я	IR	и К	
253m		252s	253w	247s	251 VW	257m 2(53wbr	(Y')*
232s	232s	230s	233W	224s	227w	235m		vag(Pb-Ph)(t)*
	221sh							26 (PbC1,)
212vs	210sh							v (Pb-C1)
		213wsh		213wsh				V 1 (Ph-0)
203vw		206bsh			207sh			
	198vs	201w	198vs	193m	194vs	200mbr 2()5vs	v(Pb-Ph)(t')*
188s								see below**
		177 <i>u</i> w		174w	173sh			
-		163vw		166vw				(n) \
						160 . br	L55 L35 ^{VW} , br	v (Pb-NCS)
		140vs	140m			-		v (Pb-Br)
				112vs	115s 112sh			(I-dq) v
.12 wm	113m							6 (PbC1,)
.03w 95wm					93sh	114sh 92sh	<i>~</i>	- - - - - - - - - - - - - - - - - - -
87 wm	86vs 78m	88wmbr	77vs	88w	8 O M		1	, Derormations

424

Assigned to V_{as} (PD-PN) (t[.] (86+103) or (78+103).

X=Bı		X=I		_
IŔ	R	IR	R	Assignment
 252m	253vw	249s	249vw	(Y')*
2225	226w	•	223w	v_{as} (Pb-Ph) (t) *
		215vs		
214s	218w		210w	ν (Pb-O)
202vw	198vs	198m	194s	r
189w	190s	188sh		$v_{s}^{(Ph-Ph)(t')*}$
		169vw		(u)*
156 vs	157m			ν ₊ (Pb-Br) (terminal)
		127 v s	13lvs	ν ₊ (Pb-I) (terminal)
121vs	121m			ν _r (Pb-Br) (bridging)
		100 vs	99m	v, (Pb-I) (bridging)
99m	105m			
	84sh		85w	Deformations
77s				J

TABLE V - Skeletal Frequencies (cm^{-1}) for Ph_2PbX_2 ·HMPA

* Whiffen's notation (12).

X=Cl or Br, the v(Pb-X) values are above those found for solid Ph₃PbX where lead is five-coordinate with strong halogen bridges (13). These results indicate a monomeric trigonal-bipyramidal structure like that of Ph₃SnX·HMPA for Ph₃PbX·HMPA with axial HMPA and X ligands and all phenyl groups equatorial. As in the tin analogues, splitting of the v_{as} (Pb-Ph) band shows a lowering of the trigonal local symmetry around the lead caused by the asymmetric HMPA ligand.

Since lead unlike tin readily achieves a coordination greater than six*, the slight solubility of the di-adducts,

^{*} For example, compare the behaviour of Me₂Pb(ox)₂ in O-donor solvents with that of Me₂Sn(ox)₂(16), and the formation of adducts by Me₂Pb(OBz)₂ with both benzoate groups retaining bidentate co-ordination(17).

Ph2PbX2 · 2HMPA (X=Cl,Br,I) could imply a polymeric structure involving halogen bridges as found in Ph_PbCl_ (14). However, the sharp melting points and the v(Pb-X)/v(Sn-X) values of 0.95(X=Cl), 1.00(X=Br) and 0.98(X=I) for these compounds suggest that like their tin counterparts, they have a monomeric sixcoordinate octahedral structure, with either cis or trans arrangements of the halide and HMPA ligands. The coincidence of infrared and Raman values for v(Pb-X) and the Raman activity of v_{as} (Pb-Ph) and infrared activity of v_{s} (Pb-Ph), all favour the cis structure for these adducts. The same structure was proposed earlier for Ph_Pb(NCS) - 2HMPA based on thiocyanate group frequencies (6).

The mono-adducts with Ph2PbX2(X=Br,I) could be five-coordinate like their tin analogues. However, v (Pb-X) values in the same range as for the di-adducts and splitting of $\nu_{_{\rm S}}\,(Pb\text{-}Ph)$, presumably due to coupling between adjacent Ph,Pb units, suggest structures (II) using halogen bridges to achieve six-coordinate lead for these compounds.

IIa

The two lead-halogen stretching frequencies observed, both infrared and Raman active, are thus assigned to terminal (higher) and bridging (lower) v(Pb-X) modes. Indeed, the $v_{b}(Pb-Br)$ value for Ph_2PbBr_2 -HMPA(121 cm⁻¹) is the same as that found for solid $Ph_{2}PbBr_{2}$ (122 cm⁻¹) which is polymeric (11).

³¹P nmr Spectra

All adducts gave a single sharp peak at room temperature in $\text{CDCl}_3/\text{CH}_2\text{Cl}_2$ (Table II) indicating fast exchange of coordinated and free ligands. A temperature of 190-200K was required to resolve separate free and coordinated ligand peaks in $\text{CDCl}_3/\text{CH}_2\text{Cl}_2$ eutectic as solvent.

Peaks may be uniquely assigned for solutions of $Ph_2Pb(NCS)_2$. 2HMPA which is undissociated at room temperature and for solutions of Ph_3PbX ·HMPA where only one adduct is possible. However, for the rest of the diphenyllead halide adducts, without solution molecular weight data, the nature of the solute species for these compounds is uncertain and no definite assignments can be made.

Coordination of HMPA in all cases causes a small upfield movement in δ_p as in the corresponding tin adduct (7), presumably because any decrease in electron density at phosphorus due to oxygen coordination is compensated by electron donation from the -NMe₂ groups.

Lead-phosphorous coupling constants show more variation with adduct type than do chemical shift values. For the $Ph_3PbX \cdot HMPA$ series, ${}^2J(Pb-P)$ varies with X in the order: NCS>I~Br>Cl, which differs from that found for the tin series:I>NCS>Br>Cl. Thus, the nmr "trans-influence" (18) of an anion X⁻ cannot be automatically assumed to be the same in an analogous series of tin and lead compounds. For the diphenyllead halide adducts ${}^2J(Pb-P)$ values appear to increase with increasing coordination but, without definite assignments, the effect of X on ${}^2J(Pb-P)$ values cannot be discussed further.

Mass Spectra

As expected for compounds of this type over sixty percent of the ion current in most cases is due to $HMPA^{-+}$ and its fragmentation products $(Me_2N)_2PO^+$ and Me_2NPOH^+ . The lead-containing

*
ions)
(lead-containing
data
spectral
Mass
1
۲I
TABLE

0.5 14.6 39.0 11.2 о. З 0.6 5.6 X=1 n=1 25.4 L. 1 ι.7 25.0 0.4 0.8 24.9 0.2 1.0 10.4 7.9 21.3 X=I n=2 1.2 t X=Br n=1 0.6 0.2 17.8 4.3 9.0 6.4 2.5 33.0 33.8 0.4 0.4 Ph₂PbX₂·nHMPA X=Br n=2 23.3 0.3 0.3 0.3 0.3 15.2 4.3 4.5 8.8 41.7 1.1 X=C1 n=2 2.6 50.6 0.6 г. 9 9.6 1.3 10.2 23.1 I ŧ 1 Ph₂PbX•HMPA⁺ рьх•нмрл⁺ РЬ∙НМРА⁺∙ Ph₂PbX₂⁺. Ph2PbX⁺ PhPbx,⁺ PhPbx⁺. NOI PbX2⁺. PhPb⁺ .+dq PbX⁺ 0.2 28.0 32.0 6.6 29.0 6.0 I=X ı I ı ł t 1 X=Br 28.0 17.9 с. О 0.4 0.5 22.9 6.0 6.0 6.0 22.0 0.1 0.1 X=C1 28.9 0.5 9.91 14.2 1.4 0.5 1.4 1.4 11.4 23.7 1 ı Ph₃PbX • HMPA Рћ₂РЬХ∙НМРА⁺ ₽һ₃РЬ•НМРА⁺ РһРЪ•НМРА⁺ ION РЬХ•НМРА⁺ Pb·IIMPA⁺ Ph₂PbX⁺ Ph2Pb⁺. Ph3Pb⁺ PhPbX⁺. PhPb⁺ Pb⁺. Pbx⁺

Percentage of the total positive ion current carried by metal-containing ions.

ions (Table VI) are dominated by the even electron species Ph_3Pb^+ , Ph_2PbX^+ , $PhPb^+$, and PbX^+ , following the general trend observed in the mass spectra of organometallic compounds of Group IV elements (19). The only abundant (>10%) odd-electron lead-containing species is Pb^+ . No parent ion was observed for adducts of either Ph_3PbX or Ph_2PbX_2 and only for $Ph_2PbBr_2 \cdot nHMPA$ was an ion corresponding to the parent Lewis acid observed. Several species are observed with one HMPA coordinated which may be formed by loss of phenyl or halogen from the parent molecule-ions. Interestingly, the HMPA bonds sufficiently to lead so that $Pb \cdot HMPA^+$ is observed in all but one spectrum. However, there is always the possibility of these ions containing HMPA being formed by recombination in the mass spectrometer.

Comparison of lead-containing ion abundance data for Ph₃PbX·HMPA and the parent Lewis acids (20) shows significant differences when X=Cl and Br. For X=Cl, the metal ion Pb⁺ is less abundant in the adduct spectrum (29%) than in fact of the parent chloride (38%), while for bromide species differences mainly occur in the abundance of three coordinate species, adduct 23% and 6%, parent bromide 18% and 17%, of Ph₂PbBr⁺ and Ph₃Pb⁺ respectively. This indicates that coordinated HMPA affects the fragmentation of these adducts, perhaps following a pattern like that suggested for the corresponding tin compounds However, these differences are not as great as those between (7). Ph,SnCl·HMPA and Ph,SnCl, which together with the smaller abundances of HMPA-containing metal ions and a greater fraction of total ion current carried by HMPA⁺ and its fragmentation products in the lead cases, would suggest that loss of HMPA before or after ionisation is more important for Ph3PbX.HMPA (X=Cl, Br) than for Ph3SnCl·HMPA. For Ph3PbI·HMPA, the principal metal ions (>20%) are Ph₃Pb⁺, PhPb⁺, and Pb⁺, as is also found for Ph₃PbI and Ph₄Pb (21), showing loss of I and HMPA to give Ph₃Pb⁺ is the

main fragmentation process of the iodide adduct. Unfortunately, like other Group IV derivatives, no metastable ions were observed and therefore no detailed fragmentation pattern was proposed for the triphenyllead halide adducts studied here.

Mass spectral data for $Ph_2PbX_2(X=Cl, Br, I)$ are not yet available and thus the effect of coordinated HMPA on the fragmentation of the diphenyllead halide adducts cannot be assessed. The ion Pb^{+.} is unusually abundant (75%) in the lead-ion spectrum of Ph_2PbCl_2 , while the lead-containing ion abundance data for the mono- and di-adducts of $Ph_2PbX_2(X=Br, I)$ show distinct differences perhaps due to the different numbers of HMPA ligand molecules present in these adducts.

Comparison of Phenyl-tin and -lead Halides and their HMPA Adducts.

A recent review of crystal structures of tin compounds (22) shows phenyl-tin chlorides, bromides, and iodides are mainly molecular in the solid state with weak halogen-bridging interactions causing some distortions from a regular tetrahedral arrangement around tin. These compounds are low melting and freely soluble in a range of non-coordinating solvents. In contrast, X-ray studies (13, 14) and vibrational results (11) indicate phenyllead chlorides and bromides are polymeric with strong halogen-bridging sufficient to render Ph2PbX2(X=Cl, Br) insoluble in non-coordinating solvents. Iodide bridges are weaker causing PhyPbI, to be soluble in benzene as are all Ph₂PbX(X=Cl, Br, I). Melting points of all phenyllead halides are higher than those of their tin counterparts the difference being least for iodides. Both diand tri-phenyl-tin and lead-thiocyanates (6, 23) are polymeric as are Ph₃SnNCO(24) and Ph₃PbNCO(25), in all cases using the ambidentate -NCS - or -NCO - groups.

The HMPA adducts of di- and triphenyltin and lead halides and thiocyanates are more similar in structure and properties

as compared with the parent compounds. Thus all Ph_3MX -HMPA (M=Sn, Pb) are five-coordinate monomers, soluble in benzene, with very similar melting points. Only for X= NCS is there a noteworthy difference in melting points. The di-adducts with Ph_2MX_2 (M=Sn, Pb) all have monomeric six coordinate structures, with a trans Ph_2M group. However, the tin compounds with the trans- X_2 -trans- L_2 configuration are in general lower melting and more soluble in benzene than the lead compounds which have the cis- X_2 -cis- L_2 configuration. Factors influencing the choice of trans or cis MX_2L_2 configurations in $Ph_2SNX_2L_2$ systems are not well understood (22) and as well as the nature of L or X, a change from tin to lead also has an effect. Interestingly, both $Ph_2M(NCS)_2$ ·2HMPA species, although monomeric and soluble in benzene, have the same high melting point (~230°C).

The essential difference in the phenyl -tin and -lead halide systems is shown by the mono-adducts, $Ph_2MX_2 \cdot HMPA$. For M=Sn, the adducts are monomeric five coordinate, soluble in benzene, with melting points between those of the di-adduct and parent halide. With M=Pb, six-coordination is probably retained due to halogen bridges, causing the adducts to be only vary slightly soluble in benzene. For X=Br, melting points lie in the order Ph_2PbBr_2 >mono-adduct>di-adduct, but for X=I, the opposite order occurs, presumably connected with the much weaker bridging in Ph_2PbI_2 compared with $Ph_2PbBr_2(11)$.

Adduct formation by phenyl-tin halides occurs by the forming of tin-ligand bonds causing an increase in the coordination number of the central tin atom. In contrast, in the lead case, no change in coordination occurs and adduct formation requires that halogen bridges (sometimes strong) be broken. Thus, while one would expect analogous tin and lead compounds not to differ greatly in acceptor strength, because of the two different processes apparently used for adduct formation, it is unwise to extrapolate too closely

the formation, structure, and properties of phenyl -lead halide adducts from the better known tin compounds.

Acknowledgements

We are grateful for the financial support of the National Science and Engineering Research Council of Canada and Le Gouvernement du Québec, Ministère de l'Education.

References

- I.P. Beletskaya, K.P. Butin, A.N. Ryabtsev, and O.A. Reutov, J. Organometal. Chem., <u>59</u>, (1973) 1.
- 2. K. Hills and M.C. Henry, J. Organometal. Chem., 3, (1965) 159.
- 3. H.J. Haupt and F. Huber, <u>J. Organometal. Chem.</u>, <u>33</u>, (1971) 175.
- T.N. Mitchell, J. Gmehling, and F. Huber, <u>J. Chem. Soc.</u>, Dalton Trans., (1978) 960.
- 5. R.H. Cox, J. Magn. Reson., 33, (1979) 61.
- 6. R. Makhija and M. Onyszchuk, J. Organometal. Chem., 135, (1977) 261.
- 7. I. Wharf, M. Onyszchuk, D.M. Palett, and J. Miller, <u>Can. J.</u> <u>Spectroscopy</u>, In Press.
- 8. R. Makhija, M. Trudeau, and G. Donnay, J. Appl. Cryst.,8, (1975)495.
- 9. H.J. Emeléus and P.R. Evans, J. Chem. Soc., (1964) 570.
- 10. E. Kunze and F. Huber, J. Organometal. Chem., 57, (1973) 345.
- 11. R.J.H. Clark, A.G. Davies, and R.J. Puddephatt, <u>Inorg. Chem.</u>, 8, (1969) 457.
- 12. D.H. Whiffen, J. Chem. Soc., (1956) 1350.
- 13. H. Preut and F. Huber, Z. anorg. Chem., 435, (1977) 234.
- 14. M. Mammi, V. Busetti, and A. Del Pra, <u>Inorg. Chim. Acta</u>, <u>1</u>, (1967) 419.
- 15. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd ed., Wiley-Interscience, New York, 1978.
- 16. M. Aritomi and Y. Kawasaki, J. Organometal. Chem., 81, (1974) 363.
- 17. A. Mitsutoshi, K. Hashimoto, and Y. Kawasaki, J. Organometal. Chem., 93, (1973) 181.
- T.G. Appleton, H.C. Clark, and L.E. Manzer, <u>Coord. Chem. Rev.</u>, <u>10</u>, (1973) 335.

- 19. F. Glockling in J. Charalambous, Editor, "Mass Spectrometry of Metal Complexes", Butterworth, London (1975), Chapter 5.
- 20. J. Miller, Private Communication.
- D.B. Chambers, F. Glockling, and M. Weston, J. Chem. Soc. (A), (1967) 1759.
- 22. J.A. Zubieta and J.J. Zuckerman, Progr. Inorg. Chem., <u>24</u> (1978) 251.
- 23. R. Makhija, Unpublished Results.

-

- 24. T.N. Tarkhova, E.V. Chuprunov, M.A. Simonov, and N.V. Belov, Sov. Phys.-Cryst., 22, (1977) 571.
- T.N. Tarkhova, E.V. Chuprunov, L.E. Nikoleava, M.A. Simonov, and N.V. Belov, <u>Sov. Phys-Cryst.</u>, 23, (1978) 281.